Optimization of GMAW Process Parameters Using Particle Swarm Optimization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cutting Parameters Optimization by Using Particle Swarm Optimization (PSO)

Cutting parameters play an essential role in the economics of machining. In this paper, particle swarm optimization (PSO), a novel optimization algorithm for cutting parameters optimization (CPO), was discussed comprehensively. First, the fundamental principle of PSO was introduced; then, the algorithm for PSO application in cutting parameters optimization was developed; thirdly, cutting experi...

متن کامل

portfolio optimization using particle swarm optimization method

the markowitz’s optimization problem is considered as a standard quadratic programming problem that has exact mathematical solutions. considering real world limits and conditions, the portfolio optimization problem is a mixed quadratic and integer programming problem for which efficient algorithms do not exist. therefore, the use of meta-heuristic methods such as neural networks and evolutionar...

متن کامل

Search Optimization using Multiobjective Particle Swarm Optimization

The reusability provides many benefits such as increasing productivity, Reliability & Quality along with reducing the cost &development time and if the number of components developed is not according to the requirement then the technique of reusability is of great help. The main problem faced by the CBSE in reusability is to select the component for reuse as before reusing there is need to retr...

متن کامل

Good Parameters for Particle Swarm Optimization

The general purpose optimization method known as Particle Swarm Optimization (PSO) has a number of parameters that determine its behaviour and efficacy in optimizing a given problem. This paper gives a list of good choices of parameters for various optimization scenarios which should help the practitioner achieve better results with little effort.

متن کامل

Identification of Jiles–Atherton Model Parameters Using Particle Swarm Optimization

This paper presents the use of the Particle Swarm Optimization for the identification of Jiles-Atherton model parameters. This approach is tested on two magnetic materials : NO 3% SiFe and NiFe 20-80. Results are compared with those obtained with a direct search method. Experimental validations are also presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISRN Metallurgy

سال: 2013

ISSN: 2090-8717

DOI: 10.1155/2013/460651